
Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 1

Xbox 360 Alpha vs. Final Hardware Performance

This documentation is an early release of the final documentation, which may be changed substantially
prior to final commercial release, and is confidential and proprietary information of Microsoft Corporation.
It is disclosed pursuant to a nondisclosure agreement between the recipient and Microsoft.

Introduction
How will your game perform when you move it from Xbox 360 alpha hardware to Xbox 360
final hardware? The true answer is complex and dependent on many factors, including the

details of your engine and rendering strategy. We don’t have final hardware yet, and there are
often considerable differences between actual and expected performance. This paper will
analyze the differences between the performance of alpha hardware and the expected
performance of final hardware with respect to several key factors.

Notes

• This paper does not provide benchmarks for hardware other than alpha and final.

If your engine is still PC based, it’s up to you to find the performance numbers of your
current hardware and compare them to the expected performance of final hardware.

• This paper does not provide benchmarks for the original alpha kit R300 graphics chip.
It only discusses performance with respect to the R420 upgrade.

If you haven’t ported your Xbox 360 title to the alpha kit, we suggest that you do so soon. The
Xbox 360 XDK is a stable platform and hundreds of developers are using it successfully. There

are several good reasons to move to the alpha XDK.

• If there is a bug that is specific to your engine’s usage of the XDK, the odds of getting
it fixed before launch are much better if we can identify it sooner.

• Our monthly ship schedule means a short turn around for critical bug fixes.

• There are significant DirectX differences and extensions that would be preferable to
address earlier rather than later.

• Finally, the XDK has an extensive suite of emulation and performance tools that are
not available on the PC but are critical to Xbox 360 development. It would be a
mistake to not take advantage of these tools now, even if some of the numbers are
skewed due to differences in alpha vs. final hardware.

The rest of this paper will cover detailed differences between the alpha and final CPUs, GPUs,
and DirectX performance. To better illustrate these differences, the following key is used

throughout the paper to show performance impact.

Performance Impact Key

↑↑ Much better

↑ Better

− About the same

↓ Worse

↓↓ Much worse

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 2

CPU Differences
This section explains the major performance-related differences between the CPUs and gives
examples where appropriate.

Architecture

 Scale Alpha Final Multiplier Impact

Frequency GHz 2 3 1.5 ↑

Cores cores 2 3 1.5 ↑
Hardware threads per
core

hardware
threads

1 2 2.0 ↑↑

Max instructions per
cycle per core

instructions/
cycle

5 2 0.4 ↓↓

Max instructions per
second per core

MIPS 10000 7000 0.7 ↓

Max floating-point ops
per cycle per core

FLOPS/cycle 12 8 0.7 ↓

Max floating-point
operations per core

GFLOPS 24 28 1.2 ↑

Max floating-point
operations total

GFLOPS 48 84 1.8 ↑↑

Supports out-of-order
execution

 yes no ↓↓

There will be three cores in the final CPU that run at 3 GHz per core. Each final hardware core
supports two hardware threads. Alpha hardware has two separate CPUs that run at 2 GHz

each with no hardware threads.

Do not make the mistake of thinking that higher frequency and more cores will necessarily
mean better performance. In some cases, the final cores will run code faster. In some cases,
they will run code slower.

In current CPU architectures, there are often tradeoffs made in clock rate vs. complexity. The
more complex the hardware, the smaller the maximum clock rate can be. Conversely, when
hardware is designed to run at high clock speeds, simplicity is critical.

The alpha CPUs run at a lower clock rate than the final CPU cores, but each CPU can dispatch
three instructions more per cycle than a final hardware cores. The alpha CPUs support out-of-
order execution and the final CPU cores do not. This means that clock for clock, the alpha

CPUs are probably faster running generic code, where “generic code” is defined as code that is
non-streaming and is written for general non-platform-specific use.

The custom Xbox 360 compiler will help optimize for the in-order nature of the final hardware’s CPU
cores. Also, in-order architectures are inherently easier to benchmark and hand optimize for.

Register Space

 Scale Alpha Final Multiplier Impact
Integer registers per
hardware thread

64-bit
integers

32 32 1.0 −

FPU registers per
hardware thread

doubles 32 32 1.0 −

Vector registers per
hardware thread

float4s 32 128 4.0 ↑↑

Register space per
core

bytes 1024 5120 5.0 ↑↑

Total architectural
register space

bytes 2048 15360 7.5 ↑↑

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 3

The integer and float register spaces are the same per thread and are fairly generous on both

alpha and final hardware. Final hardware has four times as many vector registers per thread
as alpha hardware, so we expect to see big wins in vector processing routines that make good
use of the larger vector register space.

Final hardware has separate integer, float, and vector register spaces for each of its two
hardware threads. Along with other hardware threading optimizations, this greatly improves
the speed of multiple threads per core on final hardware.

Caches

 Scale Alpha Final Multiplier Impact

Cache line size bytes 128 128 1.0 −
L1 instruction cache
size (per core)

KB 64 32 0.5 ↓

L1 instruction cache
associativity

associativity 1-way 2-way 2.0 ↑

L1 instruction cache
hit latency

clocks ~3 4 0.8 ↓

L1 data cache size
(per core)

KB 32 32 1.0 −

L1 data cache hit
latency

clocks ~3 5 0.6

L1 data cache
associativity

associativity 2-way 4-way 2.0 ↑↑

L2 cache size KB 512 (per core) 1024 (shared) 1.0 ↑

L2 cache associativity associativity 8-way 8-way 1.0 −

L2 hit latency clocks 11 39 0.3 ↓↓

Each alpha CPU has a 1-way 64-KB instruction cache and a 2-way 32-KB data cache. Final

hardware has 32 KB for both on each core, but the associativity is better (2-way instruction
and 4-way data). For both alpha and final hardware, a good percentage of the latency of an L1

hit is usually covered up by the pipeline depth and is usually not an issue. We suspect that
final hardware will have slightly better L1 cache performance.

Each alpha CPU has an 8-way 512-KB L2 cache while the final CPU cores share an 8-way
1024-KB unified L2. The unified cache means that the cores will be able to share L2 data, and

the entire 1024 KB will be available to each core. The net effects should mean less L2 cache
misses overall.

However, the latency differences for an L2 hit in terms of cycles are larger on final hardware
(~39 cycles on final vs. ~11 cycles on alpha). We expect that this will cause many routines to
run slower on final hardware. However, the larger shared L2 should significantly reduce L2

cache misses.

Memory

 Scale Alpha Final Multiplier Impact

Memory latency clocks ~205 ~525 0.4 ↓↓
Main memory
bandwidth

GB/s
16 (8 GB/s
per core)

10.8R+10.8W
(shared)

1.4 ↑

Final hardware has higher CPU-to-main-memory bandwidth of 10.8 GB/s read + 10.8 GB/s
write (shared between all 3 cores) vs. 8 GB/s read/write (per CPU) on alpha hardware.
However, only ~6.5 GB/s read/write of the final hardware’s bandwidth can be read through
the L2 cache due to limitations of the L2 RC machines. Non-temporal writes must be used to
utilize the remaining bandwidth. The Xbox 360 CPU Caches white paper has detailed
information and explanations.

../../../../../xenoncontent/xdk/whitepapers/xbox_360_cpu_caches.doc

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 4

While the total bandwidth available is larger, this bandwidth must be shared with the GPU due

to the unified memory architecture. However, the final hardware’s CPU has a higher priority
for memory access than the GPU, so we don’t expect the sharing to affect CPU performance.

The latency to fetch from main memory is considerably larger on final hardware (~525 cycles
on final vs. ~205 cycles on alpha). We expect that this latency will be a significant factor and
cause generic code to run slower on final hardware. This is one reason why cache optimization
is so critical on final hardware for memory-intensive routines. Utilizing hardware threads to
hide stalls is also a good technique to employ on final hardware.

VPUs

 Scale Alpha Final Multiplier Impact

fmad latency cycles 6 10 0.6 ↓↓
Dot product instruction
in hardware

 no yes ↑↑

D3D vector pack /
unpack in hardware

 no yes ↑↑

The vector processing units (VPUs) on final hardware are much better than on alpha. Not only

is the register space larger, but special instructions for dot products and D3D vector packing
and unpacking are available on final hardware. Note that the latency for most VPU instructions
is larger on final hardware (10 cycles on final vs. 6 cycles on alpha), so code scheduling will be
critical.

CPU Summary and Recommendations
We recommend that hardware threading be used. We also recommend that cache control
instructions be used where possible. It is also important to maximize the coherency of your
memory accesses as much as possible. These optimizations should help avoid the latency
issues on final hardware.

We understand that in the short term many of you will be unable to completely re-architect

your engines to take advantage of threading and cache control. However, several key routines
such as skinning, ray tracing, sound, shadow volume extrusion, and so on, can be offloaded to
another core. Also, since many of these routines are streaming, the memory access can be
controlled and the benefits of pre-fetching, doing non-cached stores, and maintaining cache
coherency can be large wins. In the worst case, where very little of an engine is multi-
threaded, the large, shared L2 cache, which will primarily be used for the one thread, will help

boost performance.

If you are able to offload major systems such as rendering, AI, visibility processing, physics,
and so on to another core or hardware thread, even bigger wins can be achieved.

The final CPUs are faster, but they suffer from more stalls due to architectural differences and

longer cache and main memory latencies. We suspect that core for core, generic code will run
slightly slower on final hardware—perhaps 25 percent slower. However, engines that are
optimized for Xbox 360 have the ability to run perhaps twice as fast on final hardware vs.

alpha hardware.

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 5

GPU Differences

The differences between the alpha kit’s R420 GPU and the final hardware’s GPU are significant.

Architecture

 Scale Alpha (R420) Final Multiplier Impact

Frequency MHz 500 500 1.0 −

EDRAM MB 0 10 ↑↑

Primary Software API Direct3D 9 Direct3D 9+ ↑↑

Shader model
VS 2.0 /
PS 2.0+

VS 3.0+ /
PS 3.0+

1.0 ↑↑

Xbox 360 extensions no yes ↑↑
Total programmable
floating-point ops

GFLOPS 88 216 2.5 ↑↑

State pipelining
Pipelines
affected

8 simultaneous
contexts

 ↑↑

Shader precision bits 24-bit float 32-bit float 1.3 ↑

While both the final GPU and the alpha GPU run at 500 MHz, the similarities end there. The
final GPU is simply capable of doing much more per clock and is less bandwidth-bound than
the alpha’s R420.

The R420 has 6 vertex processing pipes and 16 pixel processing pipes. The vertex pipes work
on a single vertex at a time, and the pixel pipes work on four 2x2 pixel quads at a time. Due

to the linear nature of the pipes on the R420, it is also possible for the R420 to be bottle-
necked in either vertex processing or pixel processing. Full-screen pixel processing effects,
for example, will leave the vertex pipe mostly idle.

The final GPU is a large change from the pixel and vertex pipe concept of the R420. The best

place to learn the details of the new GPU is the Xbox 360 GPU Overview white paper.

Briefly, the final GPU schedules many simultaneous threads that work on large vectors (64
entries deep) of data at a time. It also uses EDRAM to separate frame-buffer bandwidth from
texture and vertex fetch bandwidth, which is a huge savings. Due to the unified pixel and
vertex shader model, there should be less wasted processing power due to imbalances in pixel
and vertex processing. For example, the GPU can be almost completely utilized for pixel
shading when doing post-processing effects.

The R420 supports shader model 2.0, while final hardware supports shader model 3.0 with
some useful extensions such as memory export, fetch offsets, separate blend states for
multiple render targets, compressed high dynamic range formats, programmable indexing,
and so on. We expect that the addition of these extensions and the upgrade in shader model
support will greatly improve both the look and speed of most rendering solutions.

The R420 supports static branching for vertex shaders only. Other forms of branching must

be done with predication (executing all possible branches and selecting the correct result).
The final GPU supports static and dynamic branching for both vertex and pixel shaders. On
the final GPU, dynamic branching can share the same performance characteristics as static
branching if all 64 pixels or vertices in a thread’s working group take the same branch or
iteration. If you are using branching in your pixel shaders, expect to see a performance gain.

On the R420, when a state change occurs, the portion of the pipe affected by the change must
be flushed. The final hardware’s GPU can maintain 8 separate contexts, so we expect that
state change performance will be better than the 420 with final hardware.

../../../../../xenoncontent/xdk/whitepapers/xbox_360_gpu_overview.doc

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 6

Finally, GPU calculations done on the final hardware have 8 more bits of precision, which will

help keep colors crisper and calculations more accurate.

Vertex Processing

 Scale Alpha (R420) Final Multiplier Impact

Max triangle rate megatris/s 500 500 1.0 −

Max vertex rate megaverts/s 500 500 1.0 −

Vertex shader ALU
performance

ops/cycle 6
48 (shared
with PS)

8.0 ↑↑

Max vertex shader
instructions

instructions 256 4096 16.0 ↑

Max vertex shader
float constants

float4s 256 256 1.0 −

Max vertex shader
Boolean constants

Booleans 16 128 8 ↑↑

Max vertex shader
loop constants

integers 1 16 16 ↑↑

Max vertex shader
temp Registers

float4s 16 64 4.0 ↑

Max vertex/index
fetch bandwidth

GB/s
32 (shared with

FB+PS)
22.4 (shared

with CPUs+PS)
0.7 ↑

Post-transform
cache size

vertices 16 16 1.0 −

While the max vertex and triangle rate of both cards are the same, final hardware will have
more bandwidth available for fetching given that frame buffer rendering does not share the
same bus. For example, while the R420 has 32 GB per second of vertex and index fetch

bandwidth, it must share this with both the front buffer which is a significant draw from
bandwidth. The final hardware’s use of EDRAM should alleviate this concern.

Vertex shader programs on final hardware can be larger and access more temporary registers.
They also are unified with the pixel shaders, so texture sampling can be done in the vertex

shader.

The differences in ALU processing for vertex transform and lighting are significant, with the
final GPU having 8 times more ALU power available for vertex operations.

In general, we expect the final GPU to exceed the vertex processing power of the R420.

Pixel Processing

 Scale Alpha (R420) Final Multiplier Impact

Max texture rate gigasamples/s 8 8 1.0 −
Pixel shader ALU
performance

ops/cycle 16
48 (shared
with VS)

3.0 ↑↑

Interpolated pixel
shader Inputs

float4s 10 16 1.6 ↑

Max pixel shader
instructions

instructions 512 4096 8.0 ↑

Max pixel shader
Constants

float4s 64 256 4.0 ↑

Max pixel shader
Boolean constants

Booleans 0 128 ↑↑

Max pixel shader
loop constants

integers 0 16 ↑↑

Max pixel shader
temp registers

float4s 32 64 2.0 ↑

Max texture fetch
bandwidth

GB/s
32 (shared with

fill+VS)
22.4 (shared

with CPUs+VS)
0.7 ↑

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 7

While the maximum texture fetch rate is the same, again we expect that final hardware will

exceed the R420 in this benchmark due to the alleviation of frame-buffer bandwidth sharing
by using EDRAM.

Pixel shaders can be longer on final hardware; they can have a larger register space for both
temporaries and constants, and they can have significant improvements in available ALU
processing power.

In general, we expect the final GPU to again exceed the R420 in pixel processing power.

Fill

 Scale Alpha (R420) Final Multiplier Impact

Max pixel fill rate gigapixels/s 8 4 0.5 ↓

Max Z-only pixel
Fill Rate

gigapixels/s 16 8 0.5 ↓

Max MSAA fill rate gigasamples/s 16 16 1.0 −

Max fill bandwidth GB/s
32 (shared with

VS+PS)
256 8.0 ↑↑

Bandwidth
utilization – 32 bpp
color only

% utilization
of total

100.00% 6.25% 16.0 ↑↑

Bandwidth
utilization – 32 bpp
color-Z

% utilization
of total

300.00% 18.75% 16.0 ↑↑

Bandwidth
utilization – 32 bpp
color-Z-alpha

% utilization
of total

400.00% 25.00% 16.0 ↑↑

Bandwidth
utilization – 32 bpp

color-Z-alpha 2x
MSAA

% utilization

of total
800.00% 50.00% 16.0 ↑↑

Bandwidth
utilization – 32 bpp
color-Z-alpha 4x
MSAA

% utilization
of total

800.00% 100.00% 8.0 ↑↑

The increase in bandwidth for fill due to EDRAM will speed up bandwidth-bound operations
significantly.

While the R420 technically can do twice the number of quads per cycle, it quickly becomes
frame-buffer bandwidth-bound in even the simplest case. For example, a simple color write
with Z-testing requires 300% of the available frame-buffer bandwidth on the alpha GPU. The
final GPU never becomes frame-buffer bandwidth-bound.

We expect that the available bandwidth due to EDRAM will significantly increase realizable fill
speed, especially when Z-testing, alpha-blending, and MSAA are used.

GPU Summary and Recommendations
While the bandwidth savings from EDRAM are significant, using EDRAM often requires
reworking the rendering portion of your engine. It is recommended that you consider the
impact and benefits of using EDRAM early.

Given the 64-entry working set nature of the final GPU, we recommend that you shade as
many vertices or pixels per draw call as possible.

Overall, we expect the final GPU to be faster in most respects over the R420. The additional
ALU processing power, bandwidth, and features should be a large improvement. Depending on

your rendering style and usage of the hardware, we expect this improvement to be anywhere

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 8

from 25 percent for basic lit polygon rendering to several hundred percent increases if heavy

alpha blending, MSAA, ALU operations, or static and coherent dynamic branching are used.

Direct X Differences

 Scale Alpha (R420) Final Multiplier Impact
CPU dual driver
Overhead

 Significant None ↑↑

Dynamic resource
bandwidth

GB/s 1.05 (AGP)
22.4 GB/s
(shared)

21.3 ↑↑

Resolve and format
conversion

Render to
texture

Hardware ↑↑

There are several key changes to DirectX that will appear with the move to final hardware.

Currently, Direct3D is maintaining a mixed state for both the R420 and the final hardware.
The CPU and memory overhead involved with DirectX will be significantly better on final

hardware when only a single state is maintained.

On the alpha kit, static resources are stored in video RAM for fast access by the GPU.
Dynamic resources on the alpha kit are stored in AGP memory and accessed by the GPU at 4x
AGP speed, or around 1.05 GB/s. Final hardware has a unified memory architecture, so both
static and dynamic resources can be accessed by the GPU at full speed, or 22.4 GB/s.

The HLSL compiler currently shipping with the XDK is not optimized for final hardware. Its

optimization capabilities for final hardware, especially with respect to static and dynamic
branching, will improve significantly as HLSL compiler optimizations are introduced.

Finally, a significant amount of bandwidth and pixel processing power are being consumed by
Direct3D to emulate EDRAM on the R420. Specifically, on the R420, every resolve results in a
render to texture, and format conversion is done in a pixel shader. On the final hardware, this

emulation will be history.

Audio Differences

 Scale Alpha Final Multiplier Impact

Hardware XMA decoder no yes ↑↑

Because the primary audio hardware component (a multichannel XMA decoder) is not available
on alpha hardware, there are significant differences in performance. For more details on audio
feature schedules, see the Xbox 360 Audio Roadmap white paper.

The presence of an XMA decoder, along with ongoing CPU optimizations for the XAudio low-
level audio library, will lead to significant reductions in memory footprint and relatively
equivalent CPU utilization when compared with the use of PCM wave data.

Content creators should utilize the XMA encoder already available in the XDK to familiarize
themselves with the format and appropriate quality/compression trade-offs. Programmers

should integrate the XMA decoder (command-line or library) into their build process. For the
alpha time frame, titles should likely continue to use PCM almost exclusively, as XMA software
decoding is prohibitively expensive for multiple streams. On final hardware, XMA should
typically be used for all sounds. Mixing and digital signal processing will likely see improved
performance once they are on native final hardware.

../../../../../xenoncontent/xdk/whitepapers/xbox_360_audio_roadmap.doc

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 9

Conclusion
Our first recommendation: profile your game. You need to know where your bottlenecks are
before you can put the data provided in this paper to good use.

If you are CPU bound, optimizations done to your code and algorithms will most likely provide
benefits on both alpha and final hardware. We would not begin assembly or lower-level
optimizations until algorithms and techniques are optimized. Remember, for non-optimized,
generic, single-threaded code, we expect the performance to be slightly worse on final
hardware. For such cases, consider using cache and memory-control instructions and
multithreading to help out.

If you are GPU bound, optimize algorithms and techniques first before beginning micro-
optimizations. An unused clear of the front buffer is a performance drain on both platforms,
as is a poorly implemented visibility system. We expect the performance of the GPU to be

better on final hardware, but its still worth finding the bottlenecks on the alpha GPU to verify
that the new GPU will indeed help out and by what margin.

Finally, while this paper represents our best guess on what the performance differences will
be, it is realistic to expect that some of these numbers will change before final hardware is
manufactured. It is also expected that other performance bottlenecks and critical
characteristics may arise. When changes occur, we will be sure to keep you updated.

Complete Comparison Chart

Performance Impact Key

↑↑ Much better

↑ Better

− About the same

↓ Worse

↓↓ Much worse

 Scale Alpha (R420) Final Multiplier Impact

CPU

Architecture Frequency GHz 2 3 1.5 ↑

 Cores cores 2 3 1.5 ↑

Hardware threads per
core

hardware
threads

1 2 2.0 ↑↑

Max instructions per

cycle per core

instructions/

cycle
5 2 0.4 ↓↓

Max instructions per
second per core

MIPS 10000 7000 0.7 ↓

Max floating-point
operations per cycle
per core

FLOPS/cycle 12 8 0.7 ↓

Max floating-point
operations per core

GFLOPS 24 28 1.2 ↑

Max floating-point
operations total

GFLOPS 48 84 1.8 ↑↑

Supports out-of-order
execution

 yes no ↓↓

Registers
Integer registers per
hardware thread

64-bit
integers

32 32 1.0 −

FPU registers per
hardware thread

doubles 32 32 1.0 −

 Vector registers per float4s 32 128 4.0 ↑↑

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 10

hardware thread

Register space per
core

bytes 1024 5120 5.0 ↑↑

Total architectural
register space

bytes 2048 15360 7.5 ↑↑

Caches Cache line size bytes 128 128 1.0 −

L1 instruction cache
size (per core)

KB 64 32 0.5 ↓

L1 instruction cache
associativity

associativity 1-way 2-way 2.0 ↑

L1 instruction cache
hit latency

clocks ~3 4 0.8 ↓

L1 data cache size
(per core)

KB 32 32 1.0 −

L1 data cache hit
latency

clocks ~3 5 0.6

L1 data cache
associativity

associativity 2-way 4-way 2.0 ↑↑

 L2 cache size KB 512 (per core) 1024 (shared) 1.0 ↑

 L2 cache associativity associativity 8-way 8-way 1.0 −

 L2 hit latency clocks 11 39 0.3 ↓↓

Memory Memory latency clocks ~205 ~525 0.4 ↓↓

Main memory
bandwidth

GB/s
16 (8 GB/s
per core)

10.8R+10.8W
(shared)

1.4 ↑

VPU fmad latency cycles 6 10 0.6 ↓↓

Dot product
instruction in
hardware

 no yes ↑↑

D3D vector
pack/unpack
in hardware

 no yes ↑↑

GPU

Architecture Frequency MHz 500 500 1.0 −

 EDRAM MB 0 10 ↑↑

 Primary software API Direct3D 9 Direct3D 9+ ↑↑

 Shader model VS 2.0 / PS 2.0+
VS 3.0+ /
PS 3.0+

1.0 ↑↑

 Xbox 360 Extensions no yes ↑↑

Total programmable
floating-point ops

GFLOPS 88 216 2.5 ↑↑

 State pipelining
Pipelines
affected

8 simultaneous
contexts

 ↑↑

 Shader precision bits 24-bit float 32-bit float 1.3 ↑

Vertex Max triangle rate megatris/s 500 500 1.0 −

 Max vertex rate megaverts/s 500 500 1.0 −

Vertex shader ALU
performance

ops/cycle 6
48 (shared
with PS)

8.0 ↑↑

Max vertex shader
instructions

instructions 256 4096 16.0 ↑

Max vertex shader
float constants

float4s 256 256 1.0 −

Max vertex shader
Boolean constants

Booleans 16 128 8 ↑↑

Max vertex shader
loop constants

integers 1 16 16
↑↑

Max vertex shader
temp registers

float4s 16 64 4.0 ↑

Max vertex/index
fetch bandwidth

GB/s
32 (shared with

FB+PS)
22.4 (shared

with CPUs+PS)
0.7 ↑

Unpublished work. ©2004 Microsoft Corporation. All rights reserved.
Page 11

Post transform cache
size

vertices 16 16 1.0 −

Pixel Max texture rate gigasamples/s 8 8 1.0 −

Pixel shader ALU
performance

ops/cycle 16
48 (shared
with VS)

3.0 ↑↑

Interpolated pixel
shader inputs

float4s 10 16 1.6 ↑

Max pixel shader
instructions

instructions 512 4096 8.0 ↑

Max pixel shader float
constants

float4s 64 256 4.0 ↑

Max pixel shader
Boolean constants

Booleans 0 128

↑↑

Max pixel shader
integer constants

integers 0 16
↑↑

Max pixel shader temp
registers

float4s 32 64 2.0 ↑

Max texture fetch

bandwidth
GB/s

32 (shared with

fill+VS)

22.4 (shared

with CPUs+VS)
0.7 ↑

Fill Max pixel fill rate gigapixels/s 8 4 0.5 ↓

Max Z-only pixel fill
rate

gigapixels/s 16 8 0.5 ↓

 Max MSAA fill Rate gigasamples/s 16 16 1.0 −

 Max fill bandwidth GB/s
32 (shared with

VS+PS)
256 8.0 ↑↑

Bandwidth utilization
– 32 bpp color only

% utilization
of total

100.00% 6.25% 16.0 ↑↑

Bandwidth utilization
– 32 bpp color-Z

% utilization
of total

300.00% 18.75% 16.0 ↑↑

Bandwidth utilization
– 32 bpp color-Z-
alpha

% utilization
of total

400.00% 25.00% 16.0 ↑↑

Bandwidth utilization
– 32 bpp color-Z-
alpha 2x MSAA

% utilization
of total

800.00% 50.00% 16.0 ↑↑

Bandwidth utilization
– 32 bpp color-Z-
alpha 4x MSAA

% utilization
of total

800.00% 100.00% 8.0 ↑↑

Direct X

CPU dual driver
overhead

 Significant None ↑↑

Dynamic resource
bandwidth

GB/s 1.05 (AGP)
22.4 GB/s
(shared)

21.3 ↑↑

Resolve and format
conversion

Render to
texture

Hardware ↑↑

Audio

Overall Hardware XMA decode no yes ↑↑

