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Xbox 360 Alpha vs. Final Hardware Performance 

This documentation is an early release of the final documentation, which may be changed substantially 
prior to final commercial release, and is confidential and proprietary information of Microsoft Corporation. 
It is disclosed pursuant to a nondisclosure agreement between the recipient and Microsoft. 

Introduction 
How will your game perform when you move it from Xbox 360 alpha hardware to Xbox 360 
final hardware? The true answer is complex and dependent on many factors, including the 

details of your engine and rendering strategy. We don’t have final hardware yet, and there are 
often considerable differences between actual and expected performance. This paper will 
analyze the differences between the performance of alpha hardware and the expected 
performance of final hardware with respect to several key factors. 
 

Notes    

• This paper does not provide benchmarks for hardware other than alpha and final.  

If your engine is still PC based, it’s up to you to find the performance numbers of your 
current hardware and compare them to the expected performance of final hardware. 

• This paper does not provide benchmarks for the original alpha kit R300 graphics chip.  
It only discusses performance with respect to the R420 upgrade. 

 
If you haven’t ported your Xbox 360 title to the alpha kit, we suggest that you do so soon. The 
Xbox 360 XDK is a stable platform and hundreds of developers are using it successfully. There 

are several good reasons to move to the alpha XDK.  

• If there is a bug that is specific to your engine’s usage of the XDK, the odds of getting 
it fixed before launch are much better if we can identify it sooner.  

• Our monthly ship schedule means a short turn around for critical bug fixes.  

• There are significant DirectX differences and extensions that would be preferable to 
address earlier rather than later.  

• Finally, the XDK has an extensive suite of emulation and performance tools that are 
not available on the PC but are critical to Xbox 360 development. It would be a 
mistake to not take advantage of these tools now, even if some of the numbers are 
skewed due to differences in alpha vs. final hardware. 

 
The rest of this paper will cover detailed differences between the alpha and final CPUs, GPUs, 
and DirectX performance. To better illustrate these differences, the following key is used 

throughout the paper to show performance impact. 
 

Performance Impact Key 

↑↑ Much better 

↑ Better 

− About the same 

↓ Worse 

↓↓ Much worse 
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CPU Differences 
This section explains the major performance-related differences between the CPUs and gives 
examples where appropriate. 
 

Architecture 

 Scale Alpha Final Multiplier Impact 

Frequency GHz 2 3 1.5 ↑ 

Cores cores 2 3 1.5 ↑ 
Hardware threads per 
core 

hardware 
threads 

1 2 2.0 ↑↑ 

Max instructions per 
cycle per core 

instructions/ 
cycle 

5 2 0.4 ↓↓ 

Max instructions per 
second per core 

MIPS 10000 7000 0.7 ↓ 

Max floating-point ops 
per cycle per core 

FLOPS/cycle 12 8 0.7 ↓ 

Max floating-point 
operations per core 

GFLOPS 24 28 1.2 ↑ 

Max floating-point 
operations total 

GFLOPS 48 84 1.8 ↑↑ 

Supports out-of-order 
execution 

 yes no  ↓↓ 

 
There will be three cores in the final CPU that run at 3 GHz per core. Each final hardware core 
supports two hardware threads. Alpha hardware has two separate CPUs that run at 2 GHz 

each with no hardware threads. 
 
Do not make the mistake of thinking that higher frequency and more cores will necessarily 
mean better performance. In some cases, the final cores will run code faster. In some cases, 
they will run code slower. 

 

In current CPU architectures, there are often tradeoffs made in clock rate vs. complexity. The 
more complex the hardware, the smaller the maximum clock rate can be. Conversely, when 
hardware is designed to run at high clock speeds, simplicity is critical. 
 
The alpha CPUs run at a lower clock rate than the final CPU cores, but each CPU can dispatch 
three instructions more per cycle than a final hardware cores. The alpha CPUs support out-of-
order execution and the final CPU cores do not. This means that clock for clock, the alpha 

CPUs are probably faster running generic code, where “generic code” is defined as code that is 
non-streaming and is written for general non-platform-specific use.   
 
The custom Xbox 360 compiler will help optimize for the in-order nature of the final hardware’s CPU 
cores. Also, in-order architectures are inherently easier to benchmark and hand optimize for. 

Register Space 

 Scale Alpha Final Multiplier Impact 
Integer registers per 
hardware thread 

64-bit 
integers 

32 32 1.0 − 

FPU registers per 
hardware thread 

doubles 32 32 1.0 − 

Vector registers per 
hardware thread 

float4s 32 128 4.0 ↑↑ 

Register space per 
core 

bytes 1024 5120 5.0 ↑↑ 

Total architectural 
register space 

bytes 2048 15360 7.5 ↑↑ 
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The integer and float register spaces are the same per thread and are fairly generous on both 

alpha and final hardware. Final hardware has four times as many vector registers per thread 
as alpha hardware, so we expect to see big wins in vector processing routines that make good 
use of the larger vector register space. 

 
Final hardware has separate integer, float, and vector register spaces for each of its two 
hardware threads. Along with other hardware threading optimizations, this greatly improves 
the speed of multiple threads per core on final hardware.  

Caches 

 Scale Alpha Final Multiplier Impact 

Cache line size bytes 128 128 1.0 − 
L1 instruction cache 
size (per core) 

KB 64 32 0.5 ↓ 

L1 instruction cache 
associativity 

associativity 1-way 2-way 2.0 ↑ 

L1 instruction cache 
hit latency 

clocks ~3 4 0.8 ↓ 

L1 data cache size 
(per core) 

KB 32 32 1.0 − 

L1 data cache hit 
latency 

clocks ~3 5 0.6  

L1 data cache 
associativity 

associativity 2-way 4-way 2.0 ↑↑ 

L2 cache size KB 512 (per core) 1024 (shared) 1.0 ↑ 

L2 cache associativity associativity 8-way 8-way 1.0 − 

L2 hit latency clocks 11 39 0.3 ↓↓ 

 
Each alpha CPU has a 1-way 64-KB instruction cache and a 2-way 32-KB data cache. Final 

hardware has 32 KB for both on each core, but the associativity is better (2-way instruction 
and 4-way data). For both alpha and final hardware, a good percentage of the latency of an L1 

hit is usually covered up by the pipeline depth and is usually not an issue. We suspect that 
final hardware will have slightly better L1 cache performance. 
 
Each alpha CPU has an 8-way 512-KB L2 cache while the final CPU cores share an 8-way 
1024-KB unified L2. The unified cache means that the cores will be able to share L2 data, and 

the entire 1024 KB will be available to each core. The net effects should mean less L2 cache 
misses overall. 
 
However, the latency differences for an L2 hit in terms of cycles are larger on final hardware 
(~39 cycles on final vs. ~11 cycles on alpha). We expect that this will cause many routines to 
run slower on final hardware. However, the larger shared L2 should significantly reduce L2 

cache misses. 

Memory 

 Scale Alpha Final Multiplier Impact 

Memory latency clocks ~205 ~525 0.4 ↓↓ 
Main memory 
bandwidth 

GB/s 
16 (8 GB/s  
per core) 

10.8R+10.8W 
(shared) 

1.4 ↑ 

 

Final hardware has higher CPU-to-main-memory bandwidth of 10.8 GB/s read + 10.8 GB/s 
write (shared between all 3 cores) vs. 8 GB/s read/write (per CPU) on alpha hardware. 
However, only ~6.5 GB/s read/write of the final hardware’s bandwidth can be read through 
the L2 cache due to limitations of the L2 RC machines. Non-temporal writes must be used to 
utilize the remaining bandwidth. The Xbox 360 CPU Caches white paper has detailed 
information and explanations. 

 

../../../../../xenoncontent/xdk/whitepapers/xbox_360_cpu_caches.doc
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While the total bandwidth available is larger, this bandwidth must be shared with the GPU due 

to the unified memory architecture. However, the final hardware’s CPU has a higher priority 
for memory access than the GPU, so we don’t expect the sharing to affect CPU performance. 
  

The latency to fetch from main memory is considerably larger on final hardware (~525 cycles 
on final vs. ~205 cycles on alpha). We expect that this latency will be a significant factor and 
cause generic code to run slower on final hardware. This is one reason why cache optimization 
is so critical on final hardware for memory-intensive routines. Utilizing hardware threads to 
hide stalls is also a good technique to employ on final hardware. 

VPUs 

 Scale Alpha Final Multiplier Impact 

fmad latency cycles 6 10 0.6 ↓↓ 
Dot product instruction  
in hardware 

 no yes  ↑↑ 

D3D vector pack / 
unpack in hardware 

 no yes  ↑↑ 

 
The vector processing units (VPUs) on final hardware are much better than on alpha. Not only 

is the register space larger, but special instructions for dot products and D3D vector packing 
and unpacking are available on final hardware. Note that the latency for most VPU instructions 
is larger on final hardware (10 cycles on final vs. 6 cycles on alpha), so code scheduling will be 
critical. 

CPU Summary and Recommendations 
We recommend that hardware threading be used. We also recommend that cache control 
instructions be used where possible. It is also important to maximize the coherency of your 
memory accesses as much as possible. These optimizations should help avoid the latency 
issues on final hardware. 
 

We understand that in the short term many of you will be unable to completely re-architect 

your engines to take advantage of threading and cache control. However, several key routines 
such as skinning, ray tracing, sound, shadow volume extrusion, and so on, can be offloaded to 
another core. Also, since many of these routines are streaming, the memory access can be 
controlled and the benefits of pre-fetching, doing non-cached stores, and maintaining cache 
coherency can be large wins. In the worst case, where very little of an engine is multi-
threaded, the large, shared L2 cache, which will primarily be used for the one thread, will help 

boost performance. 
 
If you are able to offload major systems such as rendering, AI, visibility processing, physics, 
and so on to another core or hardware thread, even bigger wins can be achieved. 
 
The final CPUs are faster, but they suffer from more stalls due to architectural differences and 

longer cache and main memory latencies. We suspect that core for core, generic code will run 
slightly slower on final hardware—perhaps 25 percent slower. However, engines that are 
optimized for Xbox 360 have the ability to run perhaps twice as fast on final hardware vs. 

alpha hardware.  
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GPU Differences 
 
The differences between the alpha kit’s R420 GPU and the final hardware’s GPU are significant.  
 

Architecture 

 Scale Alpha (R420) Final Multiplier Impact 

Frequency MHz 500 500 1.0 − 

EDRAM MB 0 10  ↑↑ 

Primary Software API  Direct3D 9 Direct3D 9+  ↑↑ 

Shader model  
VS 2.0 /  
PS 2.0+ 

VS 3.0+ /  
PS 3.0+ 

1.0 ↑↑ 

Xbox 360 extensions  no yes  ↑↑ 
Total programmable 
floating-point ops 

GFLOPS 88 216 2.5 ↑↑ 

State pipelining  
Pipelines 
affected 

8 simultaneous 
contexts 

 ↑↑ 

Shader precision bits 24-bit float 32-bit float 1.3 ↑ 

 
While both the final GPU and the alpha GPU run at 500 MHz, the similarities end there. The 
final GPU is simply capable of doing much more per clock and is less bandwidth-bound than 
the alpha’s R420. 
 
The R420 has 6 vertex processing pipes and 16 pixel processing pipes. The vertex pipes work 
on a single vertex at a time, and the pixel pipes work on four 2x2 pixel quads at a time. Due 

to the linear nature of the pipes on the R420, it is also possible for the R420 to be bottle-
necked in either vertex processing or pixel processing. Full-screen pixel processing effects,  
for example, will leave the vertex pipe mostly idle. 
 
The final GPU is a large change from the pixel and vertex pipe concept of the R420. The best 

place to learn the details of the new GPU is the Xbox 360 GPU Overview white paper. 

Briefly, the final GPU schedules many simultaneous threads that work on large vectors (64 
entries deep) of data at a time. It also uses EDRAM to separate frame-buffer bandwidth from 
texture and vertex fetch bandwidth, which is a huge savings. Due to the unified pixel and 
vertex shader model, there should be less wasted processing power due to imbalances in pixel 
and vertex processing. For example, the GPU can be almost completely utilized for pixel 
shading when doing post-processing effects. 
 

The R420 supports shader model 2.0, while final hardware supports shader model 3.0 with 
some useful extensions such as memory export, fetch offsets, separate blend states for 
multiple render targets, compressed high dynamic range formats, programmable indexing, 
and so on. We expect that the addition of these extensions and the upgrade in shader model 
support will greatly improve both the look and speed of most rendering solutions. 
 
The R420 supports static branching for vertex shaders only.  Other forms of branching must 

be done with predication (executing all possible branches and selecting the correct result).  
The final GPU supports static and dynamic branching for both vertex and pixel shaders.  On 
the final GPU, dynamic branching can share the same performance characteristics as static 
branching if all 64 pixels or vertices in a thread’s working group take the same branch or 
iteration. If you are using branching in your pixel shaders, expect to see a performance gain.  
 

On the R420, when a state change occurs, the portion of the pipe affected by the change must 
be flushed. The final hardware’s GPU can maintain 8 separate contexts, so we expect that 
state change performance will be better than the 420 with final hardware. 
 

../../../../../xenoncontent/xdk/whitepapers/xbox_360_gpu_overview.doc
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Finally, GPU calculations done on the final hardware have 8 more bits of precision, which will 

help keep colors crisper and calculations more accurate. 

Vertex Processing 

 Scale Alpha (R420) Final Multiplier Impact 

Max triangle rate megatris/s 500 500 1.0 − 

Max vertex rate megaverts/s 500 500 1.0 − 

Vertex shader ALU 
performance 

ops/cycle 6 
48 (shared 
with PS) 

8.0 ↑↑ 

Max vertex shader 
instructions 

instructions 256 4096 16.0 ↑ 

Max vertex shader 
float constants 

float4s 256 256 1.0 − 

Max vertex shader 
Boolean constants 

Booleans 16 128 8 ↑↑ 

Max vertex shader 
loop constants 

integers 1 16 16 ↑↑ 

Max vertex shader 
temp Registers 

float4s 16 64 4.0 ↑ 

Max vertex/index 
fetch bandwidth 

GB/s 
32 (shared with 

FB+PS) 
22.4 (shared 

with CPUs+PS) 
0.7 ↑ 

Post-transform 
cache size 

vertices 16 16 1.0 − 

 
While the max vertex and triangle rate of both cards are the same, final hardware will have 
more bandwidth available for fetching given that frame buffer rendering does not share the 
same bus.  For example, while the R420 has 32 GB per second of vertex and index fetch 

bandwidth, it must share this with both the front buffer which is a significant draw from 
bandwidth.  The final hardware’s use of EDRAM should alleviate this concern. 
 
Vertex shader programs on final hardware can be larger and access more temporary registers. 
They also are unified with the pixel shaders, so texture sampling can be done in the vertex 

shader.   
 

The differences in ALU processing for vertex transform and lighting are significant, with the 
final GPU having 8 times more ALU power available for vertex operations.   
 
In general, we expect the final GPU to exceed the vertex processing power of the R420. 

Pixel Processing 

 Scale Alpha (R420) Final Multiplier Impact 

Max texture rate gigasamples/s 8 8 1.0 − 
Pixel shader ALU 
performance 

ops/cycle 16 
48 (shared  
with VS) 

3.0 ↑↑ 

Interpolated pixel 
shader Inputs 

float4s 10 16 1.6 ↑ 

Max pixel shader 
instructions 

instructions 512 4096 8.0 ↑ 

Max pixel shader 
Constants 

float4s 64 256 4.0 ↑ 

Max pixel shader 
Boolean constants 

Booleans 0 128  ↑↑ 

Max pixel shader 
loop constants 

integers 0 16  ↑↑ 

Max pixel shader 
temp registers 

float4s 32 64 2.0 ↑ 

Max texture fetch 
bandwidth 

GB/s 
32 (shared with 

fill+VS) 
22.4 (shared 

with CPUs+VS) 
0.7 ↑ 
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While the maximum texture fetch rate is the same, again we expect that final hardware will 

exceed the R420 in this benchmark due to the alleviation of frame-buffer bandwidth sharing 
by using EDRAM.  
 

Pixel shaders can be longer on final hardware; they can have a larger register space for both 
temporaries and constants, and they can have significant improvements in available ALU 
processing power. 
  
In general, we expect the final GPU to again exceed the R420 in pixel processing power. 

Fill 

 Scale Alpha (R420) Final Multiplier Impact 

Max pixel fill rate gigapixels/s 8 4 0.5 ↓ 

Max Z-only pixel 
Fill Rate 

gigapixels/s 16 8 0.5 ↓ 

Max MSAA fill rate gigasamples/s 16 16 1.0 − 

Max fill bandwidth GB/s 
32 (shared with 

VS+PS) 
256 8.0 ↑↑ 

Bandwidth 
utilization – 32 bpp 
color only 

% utilization 
of total 

100.00% 6.25% 16.0 ↑↑ 

Bandwidth 
utilization – 32 bpp 
color-Z  

% utilization 
of total 

300.00% 18.75% 16.0 ↑↑ 

Bandwidth 
utilization – 32 bpp 
color-Z-alpha 

% utilization 
of total 

400.00% 25.00% 16.0 ↑↑ 

Bandwidth 
utilization – 32 bpp 

color-Z-alpha 2x 
MSAA 

% utilization 

of total 
800.00% 50.00% 16.0 ↑↑ 

Bandwidth 
utilization – 32 bpp 
color-Z-alpha 4x 
MSAA 

% utilization 
of total 

800.00% 100.00% 8.0 ↑↑ 

 
The increase in bandwidth for fill due to EDRAM will speed up bandwidth-bound operations 
significantly. 
 

While the R420 technically can do twice the number of quads per cycle, it quickly becomes 
frame-buffer bandwidth-bound in even the simplest case. For example, a simple color write 
with Z-testing requires 300% of the available frame-buffer bandwidth on the alpha GPU.  The 
final GPU never becomes frame-buffer bandwidth-bound.   
 
We expect that the available bandwidth due to EDRAM will significantly increase realizable fill 
speed, especially when Z-testing, alpha-blending, and MSAA are used. 

GPU Summary and Recommendations 
While the bandwidth savings from EDRAM are significant, using EDRAM often requires 
reworking the rendering portion of your engine. It is recommended that you consider the 
impact and benefits of using EDRAM early. 

 
Given the 64-entry working set nature of the final GPU, we recommend that you shade as 
many vertices or pixels per draw call as possible. 
 
Overall, we expect the final GPU to be faster in most respects over the R420. The additional 
ALU processing power, bandwidth, and features should be a large improvement. Depending on 

your rendering style and usage of the hardware, we expect this improvement to be anywhere 
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from 25 percent for basic lit polygon rendering to several hundred percent increases if heavy 

alpha blending, MSAA, ALU operations, or static and coherent dynamic branching are used. 

Direct X Differences 

 Scale Alpha (R420) Final Multiplier Impact 
CPU dual driver 
Overhead 

 Significant None  ↑↑ 

Dynamic resource 
bandwidth 

GB/s 1.05 (AGP) 
22.4 GB/s  
(shared) 

21.3 ↑↑ 

Resolve and format 
conversion 

 
Render to 
texture 

Hardware  ↑↑ 

 
There are several key changes to DirectX that will appear with the move to final hardware. 
 
Currently, Direct3D is maintaining a mixed state for both the R420 and the final hardware.  
The CPU and memory overhead involved with DirectX will be significantly better on final 

hardware when only a single state is maintained. 

 
On the alpha kit, static resources are stored in video RAM for fast access by the GPU.  
Dynamic resources on the alpha kit are stored in AGP memory and accessed by the GPU at 4x 
AGP speed, or around 1.05 GB/s. Final hardware has a unified memory architecture, so both 
static and dynamic resources can be accessed by the GPU at full speed, or 22.4 GB/s.   
 
The HLSL compiler currently shipping with the XDK is not optimized for final hardware. Its 

optimization capabilities for final hardware, especially with respect to static and dynamic 
branching, will improve significantly as HLSL compiler optimizations are introduced. 
 
Finally, a significant amount of bandwidth and pixel processing power are being consumed by 
Direct3D to emulate EDRAM on the R420. Specifically, on the R420, every resolve results in a 
render to texture, and format conversion is done in a pixel shader. On the final hardware, this 

emulation will be history. 

Audio Differences 

 Scale Alpha Final Multiplier Impact 

Hardware XMA decoder  no yes  ↑↑ 

 
Because the primary audio hardware component (a multichannel XMA decoder) is not available 
on alpha hardware, there are significant differences in performance. For more details on audio 
feature schedules, see the Xbox 360 Audio Roadmap white paper. 

 
The presence of an XMA decoder, along with ongoing CPU optimizations for the XAudio low-
level audio library, will lead to significant reductions in memory footprint and relatively 
equivalent CPU utilization when compared with the use of PCM wave data. 
 
Content creators should utilize the XMA encoder already available in the XDK to familiarize 
themselves with the format and appropriate quality/compression trade-offs. Programmers 

should integrate the XMA decoder (command-line or library) into their build process. For the 
alpha time frame, titles should likely continue to use PCM almost exclusively, as XMA software 
decoding is prohibitively expensive for multiple streams. On final hardware, XMA should 
typically be used for all sounds. Mixing and digital signal processing will likely see improved 
performance once they are on native final hardware. 

../../../../../xenoncontent/xdk/whitepapers/xbox_360_audio_roadmap.doc
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Conclusion 
Our first recommendation: profile your game. You need to know where your bottlenecks are 
before you can put the data provided in this paper to good use. 
 

If you are CPU bound, optimizations done to your code and algorithms will most likely provide 
benefits on both alpha and final hardware. We would not begin assembly or lower-level 
optimizations until algorithms and techniques are optimized. Remember, for non-optimized, 
generic, single-threaded code, we expect the performance to be slightly worse on final 
hardware. For such cases, consider using cache and memory-control instructions and 
multithreading to help out. 

 
If you are GPU bound, optimize algorithms and techniques first before beginning micro-
optimizations. An unused clear of the front buffer is a performance drain on both platforms,  
as is a poorly implemented visibility system. We expect the performance of the GPU to be 

better on final hardware, but its still worth finding the bottlenecks on the alpha GPU to verify 
that the new GPU will indeed help out and by what margin. 
 

Finally, while this paper represents our best guess on what the performance differences will 
be, it is realistic to expect that some of these numbers will change before final hardware is 
manufactured. It is also expected that other performance bottlenecks and critical 
characteristics may arise. When changes occur, we will be sure to keep you updated. 

Complete Comparison Chart 
 

Performance Impact Key 

↑↑ Much better 

↑ Better 

− About the same 

↓ Worse 

↓↓ Much worse 

 

 

 Scale Alpha (R420) Final Multiplier Impact 

CPU 

Architecture Frequency GHz 2 3 1.5 ↑ 

 Cores cores 2 3 1.5 ↑ 

 
Hardware threads per 
core 

hardware 
threads 

1 2 2.0 ↑↑ 

 
Max instructions per 

cycle per core 

instructions/ 

cycle 
5 2 0.4 ↓↓ 

 
Max instructions per 
second per core 

MIPS 10000 7000 0.7 ↓ 

 
Max floating-point 
operations per cycle 
per core 

FLOPS/cycle 12 8 0.7 ↓ 

 
Max floating-point 
operations per core 

GFLOPS 24 28 1.2 ↑ 

 
Max floating-point 
operations total 

GFLOPS 48 84 1.8 ↑↑ 

 
Supports out-of-order 
execution 

 yes no  ↓↓ 

Registers 
Integer registers per 
hardware thread 

64-bit 
integers 

32 32 1.0 − 

 
FPU registers per 
hardware thread 

doubles 32 32 1.0 − 

 Vector registers per float4s 32 128 4.0 ↑↑ 
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hardware thread 

 
Register space per 
core 

bytes 1024 5120 5.0 ↑↑ 

 
Total architectural 
register space 

bytes 2048 15360 7.5 ↑↑ 

Caches Cache line size bytes 128 128 1.0 − 

 
L1 instruction cache 
size (per core) 

KB 64 32 0.5 ↓ 

 
L1 instruction cache 
associativity 

associativity 1-way 2-way 2.0 ↑ 

 
L1 instruction cache 
hit latency 

clocks ~3 4 0.8 ↓ 

 
L1 data cache size 
(per core) 

KB 32 32 1.0 − 

 
L1 data cache hit 
latency 

clocks ~3 5 0.6  

 
L1 data cache 
associativity 

associativity 2-way 4-way 2.0 ↑↑ 

 L2 cache size KB 512 (per core) 1024 (shared) 1.0 ↑ 

 L2 cache associativity associativity 8-way 8-way 1.0 − 

 L2 hit latency clocks 11 39 0.3 ↓↓ 

Memory Memory latency clocks ~205 ~525 0.4 ↓↓ 

 
Main memory 
bandwidth 

GB/s 
16 (8 GB/s  
per core) 

10.8R+10.8W 
(shared) 

1.4 ↑ 

VPU fmad latency cycles 6 10 0.6 ↓↓ 

 
Dot product 
instruction in 
hardware 

 no yes  ↑↑ 

 
D3D vector 
pack/unpack  
in hardware 

 no yes  ↑↑ 

GPU 

Architecture Frequency MHz 500 500 1.0 − 

 EDRAM MB 0 10  ↑↑ 

 Primary software API  Direct3D 9 Direct3D 9+  ↑↑ 

 Shader model  VS 2.0 / PS 2.0+ 
VS 3.0+ /  
PS 3.0+ 

1.0 ↑↑ 

 Xbox 360 Extensions  no yes  ↑↑ 

 
Total programmable 
floating-point ops 

GFLOPS 88 216 2.5 ↑↑ 

 State pipelining  
Pipelines 
affected 

8 simultaneous 
contexts 

 ↑↑ 

 Shader precision bits 24-bit float 32-bit float 1.3 ↑ 

Vertex Max triangle rate megatris/s 500 500 1.0 − 

 Max vertex rate megaverts/s 500 500 1.0 − 

 
Vertex shader ALU 
performance 

ops/cycle 6 
48 (shared  
with PS) 

8.0 ↑↑ 

 
Max vertex shader 
instructions 

instructions 256 4096 16.0 ↑ 

 
Max vertex shader 
float constants 

float4s 256 256 1.0 − 

 
Max vertex shader 
Boolean constants 

Booleans 16 128 8 ↑↑ 

 
Max vertex shader 
loop constants 

integers 1 16 16 
↑↑ 

 
Max vertex shader 
temp registers 

float4s 16 64 4.0 ↑ 

 
Max vertex/index 
fetch bandwidth 

GB/s 
32 (shared with 

FB+PS) 
22.4 (shared 

with CPUs+PS) 
0.7 ↑ 
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Post transform cache 
size 

vertices 16 16 1.0 − 

Pixel Max texture rate gigasamples/s 8 8 1.0 − 

 
Pixel shader ALU 
performance 

ops/cycle 16 
48 (shared  
with VS) 

3.0 ↑↑ 

 
Interpolated pixel 
shader inputs 

float4s 10 16 1.6 ↑ 

 
Max pixel shader 
instructions 

instructions 512 4096 8.0 ↑ 

 
Max pixel shader float 
constants 

float4s 64 256 4.0 ↑ 

 
Max pixel shader 
Boolean constants 

Booleans 0 128  
 

↑↑ 

 
Max pixel shader 
integer constants 

integers 0 16  
↑↑ 

 
Max pixel shader temp 
registers 

float4s 32 64 2.0 ↑ 

 
Max texture fetch 

bandwidth 
GB/s 

32 (shared with 

fill+VS) 

22.4 (shared 

with CPUs+VS) 
0.7 ↑ 

Fill Max pixel fill rate gigapixels/s 8 4 0.5 ↓ 

 
Max Z-only pixel fill 
rate 

gigapixels/s 16 8 0.5 ↓ 

 Max MSAA fill Rate gigasamples/s 16 16 1.0 − 

 Max fill bandwidth GB/s 
32 (shared with 

VS+PS) 
256 8.0 ↑↑ 

 
Bandwidth utilization 
– 32 bpp color only 

% utilization 
of total 

100.00% 6.25% 16.0 ↑↑ 

 
Bandwidth utilization 
– 32 bpp color-Z  

% utilization 
of total 

300.00% 18.75% 16.0 ↑↑ 

 
Bandwidth utilization 
– 32 bpp color-Z-
alpha 

% utilization 
of total 

400.00% 25.00% 16.0 ↑↑ 

 
Bandwidth utilization 
– 32 bpp color-Z-
alpha 2x MSAA 

% utilization 
of total 

800.00% 50.00% 16.0 ↑↑ 

 
Bandwidth utilization 
– 32 bpp color-Z-
alpha 4x MSAA 

% utilization 
of total 

800.00% 100.00% 8.0 ↑↑ 

Direct X 

 
CPU dual driver 
overhead 

 Significant None  ↑↑ 

 
Dynamic resource 
bandwidth 

GB/s 1.05 (AGP) 
22.4 GB/s  
(shared) 

21.3 ↑↑ 

 
Resolve and format 
conversion 

 
Render to 
texture 

Hardware  ↑↑ 

Audio  

Overall Hardware XMA decode  no yes  ↑↑ 

 


